Matthew Dean Wood
HNC Business I.T
Year 2

Contents

Page

 Description
2 Visual Basic Toolbar
3 Executing Programs

4 Stopping Programs

5 Creating User Interfaces

6 Toolbar

7 My Text Program

8 My Text Program

9 My Text Program

10 Menu Editor

11 Menu Editor

12 Debugging

13 Different Bugs

14 Run Time Errors

15 Run Time Errors

16 Run Time Errors in my program

17 Breakpoint Mode

18 Watches

19 Logic Errors

20 Package and Deployment

21 Package Wizard

22 Package Wizard

23 Package Wizard

24 VBA explained
The Visual Basic Toolbar

The toolbar as been designed to provide shortcuts to some of the menu options. The below image shows the visual basic toolbar and these shortcuts –

[image: image57.png]

[image: image1.png]

Start, pause and execute a program Correctly
Execute / Start a program

Executing a program in Visual Basic can be carried out in a number of various ways. The first and most common being the play button at the top of the screen located on the middle of the toolbar.

The image below shows the “Run” button.

[image: image2.png]
Alternatively by selecting run and start will begin the program execution. A shortcut to this would be to press F5, this is my preferred execution method.

[image: image3.png]

Pausing the program after execution

Once the program is running various methods can be used to stop the program. The program can either be paused or stopped entirely.
Pausing the program

To pause the program I normally click pause button, the pause button is located again on the toolbar alongside the play button.

Pause button

[image: image4.png]
Pausing the program will enter the break mode, break mode is a way to walkthrough a program at the point of being paused.

To continue from break mode play will be clicked again, the program will continue from the point of pause.

Play to continue

[image: image5.png]
Stopping the program will return the programmer to the design mode.

Stop program “End”

[image: image6.png]
[image: image7.png]
Creating a User Interface

To create a user interface the first step is to open a new standard EXE project this then displays a blank user form (see below images) –

[image: image8.png]
[image: image9.png]
Or in VBA mode (press alt f11 to access this in any office program) insert user form –

[image: image10.png]
[image: image11.png]
[image: image12.png]
Example

The following pages show a simple program that I have created that uses various techniques of visual basic. The program will change the font in the label to bold, underlined and italic by the user in run time.
[image: image13.png]

[image: image14.png]

[image: image15.png]

[image: image16.png]

[image: image17.png]

[image: image18.png]
[image: image19.png][image: image20.png]

[image: image21.png]
[image: image22.png]
[image: image23.png]
[image: image24.png]

[image: image25.png]
[image: image26.png]
Creating Menus Using the Menu Editor
The menu editor is a graphical tool that manages menus in programs. It lets a user add new menus, modify and reorder existing menus, and delete old menus. It also lets a user add special effects to a menu, such as access keys, check marks, and keyboard shortcuts. After a user as added menus to a form, event procedures can be used to process menu commands.

Creating a Menu

The first step is to click the menu editor icon located on the toolbar.

[image: image27.png]
The menu editor displays menu building commands and options in a dialog box. I will specify a caption for the menu, I will use this as a title for my menu -
[image: image28.png]
[image: image29.png]
The name section assigns a name to that section of the menu bar, so for example Caption = Exit Name = mnuExit.
[image: image30.png]
Most menus have a list box that drops down with features, for example the file menu in most programs would have save, save as, open, exit. To achieve this add a new caption name it then use the right arrow. The right arrow is like an importance arrow, so the menu title would be “Matthew Menu Bar” then in the drop down menu it would have file, save and exit.
When the menu as been finished it will look like the below images –

[image: image31.png]
[image: image32.png]
Debugging a Program
The Meaning

The term debugging means “To eliminate bugs in a program or system” says the computers in prospective twelfth edition.
The process of debugging is to locate then correct errors (bugs) occurring in a application. When creating a program there will undoubtedly be mistakes made. In order to make the program work correctly the errors must be eliminated. If errors occur then the program must be debugged.

The Tools

Because of the mistakes that can occur when programming, VB as been designed with debugging tools to help with detecting run time, logic errors and understanding the behaviour of error free code.

The tools are:

· Breakpoints

· Quick Watch

· Single Step

Breakpoints are used to halt the program at the defined point in the execution of the program. So when the program is executed and the code line with the breakpoint as been encountered then VB will pause. This then helps the programmer to debug the code.

Quick watch displays the current value of an expression while the application is in break mode.

Single step allows the code to be executed statement by statement under the user’s control (F8).

Different Types of Bugs

There are three main types of errors when programming in Visual Basic, these are:
[image: image33.png]
· Syntax errors (compile errors)
[image: image34.png]
· Run-time errors (RTS errors)
· Logic errors (semantic errors)

These errors mostly occur due to the programmer typing the wrong VB code. RTS errors can be the most difficult to resolve. Syntax and Logic errors are generally due to a typing error by the programmer.

These errors will be detailed in more depth later in this document.
Run Time Errors

This kind of error can only be detected when the program is running. These errors are more difficult to resolve than the compile error, this is because the syntax is correct but the problem arises on execution.

Typical examples of run time errors are due to assigning values of the wrong data type, attempting a division by zero or accessing a non existent object or variable.

The programmer will normally be able to resolve the error, this is why it is important to have experience and knowledge of the program.
I experienced a couple of errors when I was programming for this unit, the first one was simple. The error occurred simply because I didn’t have Microsoft office assistant installed, so the on statement below highlighted -
[image: image35.png]
The second error was slightly more tricky, this was found when I was creating the excel solution. I new from experience it was most likely to be a typing error.

[image: image36.png]
The first step was to hit the debug button, this brought up the problem and highlighted it for me. The error occurred when I tried to delete something that wasn’t there, a user would not be happy if this happened whilst using the program. I new that VBA didn’t like this command because the tables or charts where not there to delete.
[image: image37.png]
The full code I was using can be seen below -
Application.DisplayAlerts = False

 Sheets("Region & Income Chart").Select

 ActiveWindow.SelectedSheets.Delete

 Sheets("Education & Age Table").Select

 ActiveWindow.SelectedSheets.Delete

 Sheets("Region & Income Table").Select

 ActiveWindow.SelectedSheets.Delete

 Sheets("Education & Age Chart").Select

 ActiveWindow.SelectedSheets.Delete

 Application.DisplayAlerts = True

End Sub
After messing around, I decided that an on error resume next code would do nicely and also to get rid of the selecting statements -

Application.DisplayAlerts = False

'

On Error Resume Next

 Sheets("Region & Income Chart").Delete

 Sheets("Education & Age Table").Delete

 Sheets("Region & Income Table").Delete

 Sheets("Education & Age Chart").Delete

 On Error GoTo 0

 Application.DisplayAlerts = True

End Sub

I found solving these errors easy, I didn’t really need to use a lot of debugging it was down to me to solve the programming code.
Using the Breakpoint Mode
Setting a breakpoint allows the programmer to instruct the program to automatically enter break mode when a certain line of code is executed. Click the left grey column in the code window to insert a breakpoint make sure it is inserted where execution needs to be paused.

[image: image38.png]
When the program is run, the programmer will enter break mode as soon as the line with the breakpoint is executed. If the code is never executed the breakpoint will never be hit.

When the line is hit it will halt and will be highlighted.

[image: image39.png]
To remove the break point and continue from that point in the program code simply click the dot in the grey column and then click continue.

Using Watches
What is a watch value?

Watch values are the current values of variables or expressions displayed at breakpoints.

How to add a watch

 1. Click view watch window.

2. Highlight the line of code you want to

add a watch to
[image: image40.png]

[image: image41.png]

 3. Right click and click add watch.
4. Select break when value changes. This

is depending on what the programmer wants to do.

[image: image42.png] [image: image43.png]
5. Click ok

6. The watch will now be visible in the watch window at the bottom

7. Right click on the watch in the watch window and click start

8. When the program hits that part in the code the program will break and show the current values in the watch window (depending on the option chosen in step 4).

Logic Errors
These errors cause the program to behave incorrectly. They are generally due to the programmer failing to arrive at the correct algorithm.

Typical Problems:

· Incorrect ordering of statements

· Failure to initialise or re-initialise a variable

· Assignment to an incorrect variable

· Use of ‘<’ instead of ‘<=’

· Use of ‘and’ instead of ‘or’

· Or omission of a crucial step in the processing etc.

This error may only appear when a certain unusual condition arises. It is important for the programmer to be careful and carry out complete testing.

Summary

Visual Basic as been designed to help the programmer in every way. Even the language is at a high level, which makes it much more like the human language than other programming languages for example C++.

Combing all the tools that Visual Basic offers it makes a nice programming package to work with. If an error occurs there are numerous ways that the programmer can solve it. Still it is useful for the programmer to have knowledge of the Basic language.

Visual Basic as come a long way from the earlier versions that where run in MS DOS. The versions today offer a lot more functions and tools for the user to work with.

Who knows what the future holds.

Package Deployment Wizard

I find that the package and deployment wizard is very useful when sharing a program with other people. The package and deployment wizard creates an executable file, but the cleaver part is that it also creates all the DLL files to accompany the program. It does this so users can use the program without having visual basic installed. One of the main advantages is the enabling of sharing but also the professionalism. The package a deployment procedure truly adds the final touches to a program.

[image: image44.png]
The fist step is to run the package and deployment wizard.

[image: image45.png]

[image: image46.png]
[image: image47.png]
[image: image48.png]
[image: image49.png]
[image: image50.png]

[image: image51.png]
[image: image52.png]
[image: image53.png]
[image: image54.png]
[image: image55.png]
VBA

[image: image56.png]
Add

Project

Open Project

Menu Editor

New Form

Save Project

Cut

Copy

Paste

Find

Undo

Re-Do

Run

Pause

Stop

Project Explorer

Properties Window

Form Layout Window

Object Browser

Toolbox

Form Position

Form Position

Standard EXE file

Blank User Form

The image to the left shows the objects that can be used for designing a user interface. User interfaces should be kept simple with colours that do not offend. For Example Red Font with Yellow background, command buttons should be named appropriately.

To begin designing the user interface the objects are simply carried across from the toolbox onto the user form.

My favourite part the blue installation screen created by the package and deployment wizard

Add image boxes

Finished template layout

Adding the text to the label that will be altered by the user at run time.

Editing the font of the label

Renaming the form

Adding the images to the images boxes

Setting properties at design time

The finished layout looks like the image to the side. The program I have designed demonstrates user input at run time to change properties.

Event procedure

This simple if decision structure process the two types of bold button clicks the user can perform in the program. If the bold button is currently in the up state, the procedure replaces the bld up icon with the bld down icon, changes the text to the boldface and sets the image box tag to down. If the button is currently in the down state, the procedure replaces the bld down icon with the bld up icon, cancels the boldface setting and sets the image box tag up. What ever state the button is in, the decision structure changes it to the opposite state.

Finished program in run time.

This is the option that I will select to package my program.

The name of the program I wish to package.

Location to where my package will be assembled.

Very useful part, selecting the appropriate drives to be packaged with the program.

Important dll files to be packaged as well. This will help the program run on other machines.

Another useful part to the wizard is the fact that a program can be broken down in to cabs. This would enable the program to be copied to floppy disks, general I select single cab as when I distribute my programs I burn them to cd. Windows 3.1 was split into cabs (1.44mb) it was spread over 6 floppy disks.

When the setup program is run the famous blue screen will appear with the title at the top. The program title for the setup screen is entered here.

See below image (setup screen title) -

�

Menu bar Title

Drop down list on the menu bar.

Break points are really useful when tracking down the problem line of code. As the break point can be removed and then the program can be stepped through. Another way of entering the step through mode is to hit F8, keep pressing F8 and the code will go line by line.

The VBA code here was looking for tables and charts that didn’t exist, so when it tried to delete them the program crashed.

The first line of code makes sure that display alerts is turned off, nice touch.

On error resume next means that any errors that occur during run time will be dismissed.

The code now does not select the tables and charts it just deletes them and if they are not there it carries on.

It is important to turn on display alerts at the end for the user.

This part of the wizard asks to where I would like the project to be installed on the start menu after installation. Brilliant feature.

If the program is going to be networked between different users this option should be considered.

Finishing off, the program needs a name to save settings. Once these steps have been completed the program is ready to be installed and distributed.

The package and deployment wizard creates a nice folder containing the setup exe and all the tools that are relevant.

VBA is a useful tool that enables a user to gain extra features from an application (mainly office applications). I think that as more and more people become aware of VBA and how powerful it is that process will be speeded up considerably. At the moment in our workplace I see tasks that can be automated by using VBA, which would speed up process but could mean the end of jobs (so I think I will keep my mouth shut and use my knowledge for myself and to educate others in this area). Please see the document “My Website” for further details.

PAGE
1

